Contents

1 Installation ... 3
2 Quick Start .. 5
3 Fine-tune Topic Representations 7
4 Modularity .. 9
5 Overview ... 11
5.1 Common ... 11
5.2 Attributes .. 11
5.3 Variations .. 12
5.4 Visualizations 12
6 Citation .. 13
BERTopic is a topic modeling technique that leverages transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions.

BERTopic supports all kinds of topic modeling techniques:

Corresponding medium posts can be found here, here and here. For a more detailed overview, you can read the paper or see a brief overview.
Installation

Installation, with sentence-transformers, can be done using `pypi`:

```bash
pip install bertopic
```

You may want to install more depending on the transformers and language backends that you will be using. The possible installations are:

```bash
# Choose an embedding backend
pip install bertopic[flair, gensim, spacy, use]

# Topic modeling with images
pip install bertopic[vision]
```
We start by extracting topics from the well-known 20 newsgroups dataset containing English documents:

```python
from bertopic import BERTopic
from sklearn.datasets import fetch_20newsgroups

docs = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))['data']
topic_model = BERTopic()
topics, probs = topic_model.fit_transform(docs)
```

After generating topics and their probabilities, we can access the frequent topics that were generated:

```python
>>> topic_model.get_topic_info()

<table>
<thead>
<tr>
<th>Topic</th>
<th>Count</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>4630</td>
<td>-1_can_your_will_any</td>
</tr>
<tr>
<td>0</td>
<td>693</td>
<td>49_windows_drive_dos_file</td>
</tr>
<tr>
<td>1</td>
<td>466</td>
<td>32_jesus_bible_christian_faith</td>
</tr>
<tr>
<td>2</td>
<td>441</td>
<td>2_space_launch_orbit_lunar</td>
</tr>
<tr>
<td>3</td>
<td>381</td>
<td>22_key_encryption_keys_encrypted</td>
</tr>
</tbody>
</table>
```

-1 refers to all outliers and should typically be ignored. Next, let’s take a look at the most frequent topic that was generated, topic 0:

```python
>>> topic_model.get_topic(0)

[('windows', 0.006152228076250982),
 ('drive', 0.004982897610645755),
 ('dos', 0.004845038866360651),
 ('file', 0.004140142872194834),
 ('disk', 0.004131678774810884),
 ('mac', 0.003624848635985097),
 ('memory', 0.0034840976976789903),
```

(continues on next page)
Using `.get_document_info`, we can also extract information on a document level, such as their corresponding topics, probabilities, whether they are representative documents for a topic, etc.:

```python
>>> topic_model.get_document_info(docs)
```

Document	Topic	Name	Top_n_words	Probability	...
I am sure some bashers of Pens...	0	0_game_team_games_	season	0.200010	...
My brother is in the market for...	-1	-1_can_your_will_any	can	0.420668	...
Finally you said what you dream...	-1	-1_can_your_will_any	can	0.807259	...
Think! It is the SCSI card doing...	49	49_windows_drive_dos_	file	0.071746	...
1) I have an old Jasmine drive...	49	49_windows_drive_dos_	file	0.038983	...

!!! tip “Multilingual”

Use `BERTopic(language="multilingual")` to select a model that supports 50+ languages.
In BERTopic, there are a number of different topic representations that we can choose from. They are all quite different from one another and give interesting perspectives and variations of topic representations. A great start is KeyBERTInspired, which for many users increases the coherence and reduces stopwords from the resulting topic representations:

```python
from bertopic.representation import KeyBERTInspired

# Fine-tune your topic representations
representation_model = KeyBERTInspired()
topic_model = BERTopic(representation_model=representation_model)
```

However, you might want to use something more powerful to describe your clusters. You can even use ChatGPT or other models from OpenAI to generate labels, summaries, phrases, keywords, and more:

```python
import openai
from bertopic.representation import OpenAI

# Fine-tune topic representations with GPT
openai.api_key = "sk-...
representation_model = OpenAI(model="gpt-3.5-turbo", chat=True)
topic_model = BERTopic(representation_model=representation_model)
```

!!! tip “Multi-aspect Topic Modeling” Instead of iterating over all of these different topic representations, you can model them simultaneously with multi-aspect topic representations in BERTopic.
By default, the main steps for topic modeling with BERTopic are sentence-transformers, UMAP, HDBSCAN, and c-TF-IDF run in sequence. However, it assumes some independence between these steps which makes BERTopic quite modular. In other words, BERTopic not only allows you to build your own topic model but to explore several topic modeling techniques on top of your customized topic model:

You can swap out any of these models or even remove them entirely. The following steps are completely modular:

1. **Embedding** documents
2. **Reducing dimensionality** of embeddings
3. **Clustering** reduced embeddings into topics
4. **Tokenization** of topics
5. **Weight tokens**
6. **Represent topics** with one or multiple representations

To find more about the underlying algorithm and assumptions [here](#).
BERTopic has many functions that quickly can become overwhelming. To alleviate this issue, you will find an overview of all methods and a short description of its purpose.

5.1 Common

Below, you will find an overview of common functions in BERTopic.

<table>
<thead>
<tr>
<th>Method</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit the model</td>
<td><code>.fit(docs)</code></td>
<td>Fit the model and predict documents</td>
</tr>
<tr>
<td>Fit the model and predict documents</td>
<td><code>.fit_transform(docs)</code></td>
<td>Predict new documents</td>
</tr>
<tr>
<td>Predict new documents</td>
<td><code>.transform([new_doc])</code></td>
<td>Access single topic</td>
</tr>
<tr>
<td>Access all topics</td>
<td><code>.get_topics()</code></td>
<td>Get topic freq</td>
</tr>
<tr>
<td>Get topic freq</td>
<td><code>.get_topic_freq()</code></td>
<td>Get all topic information</td>
</tr>
<tr>
<td>Get all document information</td>
<td><code>.get_doc_info()</code></td>
<td>Get all document information</td>
</tr>
<tr>
<td>Get representative docs per topic</td>
<td><code>.get_representative_docs()</code></td>
<td>Update topic representation</td>
</tr>
<tr>
<td>Update topic representation</td>
<td><code>.update_topic(docs, n_gram_range=(1, 3))</code></td>
<td>Generate topic labels</td>
</tr>
<tr>
<td>Generate topic labels</td>
<td><code>.generate_topic_labels()</code></td>
<td>Set topic labels</td>
</tr>
<tr>
<td>Set topic labels</td>
<td><code>.set_topic_labels(my_custom_labels)</code></td>
<td>Merge topics</td>
</tr>
<tr>
<td>Merge topics</td>
<td><code>.merge_topics(docs, topics_to_merge)</code></td>
<td>Reduce nr of topics</td>
</tr>
<tr>
<td>Reduce nr of topics</td>
<td><code>.reduce_topics(docs, nr_topics=30)</code></td>
<td>Reduce outliers</td>
</tr>
<tr>
<td>Reduce outliers</td>
<td><code>.reduce_outliers(docs, topics)</code></td>
<td>Find topics</td>
</tr>
<tr>
<td>Find topics</td>
<td><code>.find_topics("vehicle")</code></td>
<td>Save model</td>
</tr>
<tr>
<td>Save model</td>
<td><code>.save("my_model", serialization="safetensors")</code></td>
<td>Load model</td>
</tr>
<tr>
<td>Load model</td>
<td>BERTopic.load("my_model")</td>
<td>Get parameters</td>
</tr>
<tr>
<td>Get parameters</td>
<td><code>.get_params()</code></td>
<td></td>
</tr>
</tbody>
</table>

5.2 Attributes

After having trained your BERTopic model, several are saved within your model. These attributes, in part, refer to how model information is stored on an estimator during fitting. The attributes that you see below all end in `_` and are public attributes that can be used to access model information.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>.topics_</code></td>
<td>The topics that are generated for each document after training or updating the topic model.</td>
</tr>
<tr>
<td><code>.probabilities_</code></td>
<td>The probabilities that are generated for each document if HDBSCAN is used.</td>
</tr>
<tr>
<td><code>.topic_sizes_</code></td>
<td>The size of each topic</td>
</tr>
<tr>
<td><code>.topic_mapper_</code></td>
<td>A class for tracking topics and their mappings anytime they are merged/reduced.</td>
</tr>
</tbody>
</table>
| `.topic_representations_` | The top n terms per topic and
5.3 Variations

There are many different use cases in which topic modeling can be used. As such, several variations of BERTopic have been developed such that one package can be used across many use cases.

5.4 Visualizations

Evaluating topic models can be rather difficult due to the somewhat subjective nature of evaluation. Visualizing different aspects of the topic model helps in understanding the model and makes it easier to tweak the model to your liking.

| Method | Code | |———-| | Visualize Topics | .visualize_topics() | | Visualize Documents | .visualize_documents() | | Visualize Document Hierarchy | .visualize_hierarchical_documents() | | Visualize Topic Hierarchy | .visualize_hierarchy() | | Visualize Topic Tree | .get_topic_tree(hierarchical_topics) | | Visualize Topic Terms | .visualize_barchart() | | Visualize Topic Similarity | .visualize_heatmap() | | Visualize Term Score Decline | .visualize_term_rank() | | Visualize Topic Probability Distribution | .visualize_distribution(probs[0]) | | Visualize Topics over Time | .visualize_topics_over_time(topics_over_time) | | Visualize Topics per Class | .visualize_topics_per_class(topics_per_class) |
To cite the BERTopic paper, please use the following bibtex reference:

```latex
@article{grootendorst2022bertopic,
  title={BERTopic: Neural topic modeling with a class-based TF-IDF procedure},
  author={Grootendorst, Maarten},
  year={2022}
}
```